2013 119美元/桶 6.61元/升
一、油价如何定义价格
各地油价其实并不统一,以北京为例,2012年03月20日,北京92号汽油 8.33元,95号为8.87元,为历史最高。2012年3月20日,国家发改委上调国内汽柴油价格600元/吨,国内各地93号汽油零售价基本都已超过8元/升,创下了历史新高。从破七到破八,仅用了一年多。油价的涨幅已经大大超越物价指数的涨幅。
二、油价的变化
15年的油价一直比较低,绝大多数时间在6.5元以下。在一月份,二月份,以及后来的8月到12月,都是维持在5元线。最低时,甚至不到5.5元。
16年还是以不到6元的价值为多。但是从17年开始,油价又开始新的一轮猛涨,前半年是6.5元左右,后半年就涨到了7元左右。18年开始,又是一直在涨,现在已经接近7.5元了。
三、现在93号汽油的价钱:
1、油价是一直变化的,今晚刚刚加的油,现在价格是6.41元每升。93号汽油的密度大约是0.725g\/ml,一升也就是0.725kg;
2、加油站有价格,汽油(ULP),外观为透明液体,主要是由C4~C10各族烃类组成,按研究法辛烷值分为90号、93号、95号三个牌号。具有较高的辛烷值和优良的抗爆性,用于高压缩比的汽化器式汽油发动机上,可提高发动机的功率,减少燃料消耗量;具有良好的蒸发性和燃烧性;
3、能保证发动机运转平稳、燃烧完全、积炭少;具有较好的安定性,在贮运和使用过程中不易出现早期氧化变质,对发动机部件及储油容器无腐蚀性。中国2016年1月14日0点下调汽柴油限价,汽油下调140元\/吨,柴油下调135元\/吨,折合每升90#0.1、93#0.11、#0.11、0#0.12元。
这是指汽车每行驶100千米,耗油量是8.9升,如果行驶1公里,也就是1千米,耗油量是0.089升。
8.9÷100=0.089。
如果每升油价是7.54元的话,那么1千米耗费的油费是0.67元。
0.089×7.54=0.67。
数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的手段。
列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。
它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都用“列表法”。
验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。